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Abstract

Main Results

Side information Examples

We present online transductive and inductive algorithms for binary matrix
completion with side information. For these algorithms, we prove novel
mistake and expected regret bounds. In the case of no side information, the
bounds scale with the dimensionality of the matrix. In the case of ideal side
information, these scale with the number of underlying latent factors.

The Model

Online Matrix Completion

Onatrialt=1,....T":
1. the learner is queried by the environment to predict matrix entry (i, j)
2. the learner predicts a label g, € {—1,1}
3. the learner receives a label y; € {—1, 1} from the environment and

4. a mistake is incurred if y; = ;.

m Movies

Side Information

Assume that we are given additional side information about each row and column.
For instance with movies, we might have “genre” information and for the users,
we might have “demographics”. For our purposes, we assume that this can be
summarised as m x m positive definite matrix M for the row side information and
n x n positive definite matrix N for the column side information.

Previous results in online learning

General regret and mistake bounds

Mistake bound: )
Z lye # 9] < O (mc*(U)D) .

te[T]

Expected regret bound:

S Ely# 9] — Y e # Uiz < O (VDU BrT )

te[T] te[T]

forallU e {—1,1}™*".

The max-norm:

U = min max || P; max :
[Ulmse = min_ { max P  max Q]|

where the minimum is over all matrices P, Q and every integer d.

The margin complexity:

| . | Pi] 1|Q; ]
mc(U) := min Vv = min max

where the minimum is over all matrices P, Q and every integer d. Here, SP(U) = {V ¢

Frexm Vij‘/;;jUij > 0} and SPl(U) = {V e gmxn . vij‘/ijUij > 1}

The quasi-dimension:

DY, vU) == min Rartr (PTMP) LRt (QTNQ) |
’ PQT=1U

where the minimum is over all row-normalized matrices P, Q and every integer d and where
R = MaX;epm) M) . If the infimum does not exist then D}, (U) := +oc.

Biclustered matrices

Feature vectors in well-separated
boxes with the min kernel

Graph Laplacians

D < O(k* 4 ¢?) D <OKk+Y)

Algorithms

Transductive algorithm: instance of MEG [5]
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Matrix completion on real-valued matrices [1]

Binary matrix completion [2]

Mistake bound: — No side information

Z lye # 3] <O ((m+n)mc*(U)) .

te[T]
Matrix completion with graph side information on specific matrix classes
with only mistake bounds [3,4]

-

The class of (k, ¢)-binary-biclustered matrices is defined as

By ={U e {-1,1}"":r e [K]™,c € [(|",U" e {-1, 1}, U;; = U}, ..,i € [m],j € [n]}

MS(U) < (U lmax = ||U”*Imax < min (v, V7)

Parameters: Learning rate: 0 < 7, quasi-dimension estimate: 1 < D, margin
estimate: 0 < v < 1, non-conservative flag [NON-CONSERVATIVE] € {0, 1} and side
information matrices M € ST, , N € S", with m+n >3

Initialization: M «— () : W' «— %I’"W‘".
For t=1,....T
e Receive pair (ir, jr) € [m] x [n].

e Define -

vV M+ e,",f,_ VNTelt
V2Rm | V2Rn

(3)

X' = x'(x")" = :
( ) [ V2R m V2R N

e Predict

[We;';, VNTej

Y: ~ UNIFORM(—~, 7)X[NON-CONSERVATIVE] ; ¥t 4—tr (V~Vt)~(t')—1; Vr «sign(vi—Yz).
e Receive label y; € {—1,1}.
o If vy # Vr then M < MU {r}.
o If y:Vr < v X [NON-CONSERVATIVE] then
WL — exp (Iog(Wt) + nytj(t) .
e Else W'l « WT.

Inductive algorithm

For the inductive algorithm, we are given kernel functions instead of the
matrices M and N. On each trial, we are also given feature vectors for the
row and column.

We can show that the transductive and inductive algorithms are prediction-
equivalent, up to the value of ®;; and Ry .
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